微 信:15195518515
郵箱號碼:1464856260@qq.com
網(wǎng) 址:http://www.dlrunchang.cn
地 址:淮安市金湖縣理士大道61號
關于潛水排污泵流量計傳感器測量過程中靈敏度研究
潛水排污泵流量計是根據(jù)法拉*電磁感應定律制成的一種測量導電性液體體積流量的儀表。由于其具有無壓損、可測流量范圍寬、被測液體溫度范圍寬、成本低等特點,已被廣泛應用于水和廢水處理、礦業(yè)和冶金、食品和飲料、造紙、電力等工業(yè)領域中,用來測量自來水、污水、礦漿、啤酒、果汁、紙漿、泥漿等各種酸、堿、鹽溶液’。潛水排污泵流量計由傳感器和變送器組成,傳感器將管道中流體的流速轉換為電信號,通過電*把電信號引人變送器,變送器對電信號進行放大調理并轉換成標準電信號輸出。傳感器主要由磁路系統(tǒng)和電*等組成,磁路系統(tǒng)產(chǎn)生磁場,流體流過磁場切割磁力線產(chǎn)生電動勢,電*將產(chǎn)生的電動勢引人變送器。該電動勢*其微弱,一般在o. 2一0.4 mV/( m/s)的范圍之間,無法直接測量。對于不同尺寸的傳感器要求得到相同的靈敏度,或者已知要求的靈敏度如何設計傳感器就成了,待解決的問題。
本文針對于潛水排污泵流量計的測量原理以及磁路歐姆定律,分別對影響傳感器靈敏度的線圈匝數(shù)、磁導率、線圈寬度和傳感器長度等因素進行了分析、仿真和標定。通過本試驗結果顯示,傳感器靈敏度與線圈匝數(shù)和線圈寬度成正比;導磁材料硅鋼片能有效增強磁感應強度。Maxwell仿真表明,增加了硅鋼片之后磁感應強度沿電*連線增強約12% ,沿管道內壁增強約20,傳感器增益標定值提高12.7%;對于6英寸傳感器,采用標準線圈。當傳感器長度為6. 1一9. 1英寸時,既有效利用了線圈產(chǎn)生的磁場,又實現(xiàn)了*經(jīng)濟設計。
1測量原理
根據(jù)法拉*電磁感應定律,當導體在磁場中運動且切割磁力線時,在導體兩端便會產(chǎn)生感應電動勢。
潛水排污泵流量計工作原理如圖1所示。
設在磁感應強度為B的均勻磁場中,垂直于磁場方向有一個直徑為D的管道。管道由不導磁材料制成,內表面加絕緣襯里。當導電的液體在管道中流動時,導電液體就切割磁力線,因而在和磁場及流動方向垂直的方向上將產(chǎn)生感應電動勢E。如果在管道截面上垂直于磁場的直徑兩端安裝一對電*,可以證明,只要管道內流速:為軸對稱分布,兩*之間就會產(chǎn)生感應電動勢:
E=BxDxv(1)
由此可得管道的體積流量為:
口=二刀2v /4(2)
綜合式(1)、式(2),得:(3) 門吸 K一一沖一D塑側一一 E
式中:K為儀表常數(shù),在管道直徑D已確定并維持磁感應強度B恒定時,K是一個常數(shù)。此時感應電動勢與體積具有線性關系2。2傳感器勵磁理論基礎電磁流量傳感器勵磁回路中線圈匝數(shù)N、勵磁電流1和磁通勢F的關系為: !!4 工f !!=Nxl L},S
式中:凡為磁阻;拜為磁導率;S為磁路的橫截面積;L為磁路平均長度。
根據(jù)磁場的歐姆定律,磁感應強度B的大小為: FR S
(6)由式(6)可知,磁感應強度B與線圈匝數(shù)N、勵磁電流1成正比,與磁路的平均長度L、磁導率料成反比3一認
3影響潛水排污泵流量計傳感器信號強度因素
根據(jù)式(1),在傳感器尺寸一定的情況下,其靈敏度只與磁感應強度B有關。一般來說,同一系列的傳感器將采用同一種驅動電流,根據(jù)式(6),想要改變磁感應強度B,只能改變線圈匝數(shù)N和磁導率拜。磁場的覆蓋范圍(即線圈寬度)也會直接影響傳感器的靈敏度5。
電磁流量傳感器電*電壓與流體流速成正比,當標定傳感器時確定傳感器增益和偏移量,從而確定電*電壓跟流體流速之間的正比關系。傳感器增益是反映傳感器靈敏度的一個物理量,在相同的流速下增益越大,則靈敏度越高。
3.1線圈匝數(shù)
對于一臺日徑為8英寸(1英寸=25.4 mm)的傳感器,將線圈匝數(shù)從288匝改為230匝,其他參數(shù)不變,分別進行了Maxwell仿真和標定。仿真結果表明,288匝的磁力線明顯比230匝的磁力線密,磁感應強度沿徑向減少了約20% ,沿管道內壁磁感應強度也減少了約20 %。線圈匝數(shù)變化時傳感器增益標定值對比如表1所示。傳感器增益從98.00下降到78. 99,也相應減少了19.4%。
仿真和試驗結果表明,線圈匝數(shù)與磁感應強度成正比,改變線圈匝數(shù)會相應改變磁感應強度。也就是說,增加線圈匝數(shù)可以相應成比例地提高傳感器靈敏度。當然,隨著線圈匝數(shù)的增加,其電阻值、電感量、體積、質量以及成本也會相應增加。電阻值的增加會提高傳感器的功耗,電感量的增加也會限制線圈的驅動頻率叭因此,選擇線圈匝數(shù),需要結合功耗、驅動電壓、驅動頻率、分體式安裝時的*長距離和成本等參數(shù)進行綜合考慮。
3. 2磁導率
加人磁導率高的導磁材料會改變線圈的磁力線分布,能有效利用馬鞍型線圈產(chǎn)生的磁場,提高管道內磁感應強度7。本文采用了硅鋼片作為導磁材料,其緊貼線圈和管道外壁,將線圈包圍,進行Maxwell仿真和試驗室流量標定。Maxwell仿真表明,加了硅鋼片以后,硅鋼片內部磁力線明顯更加密集,硅鋼片外部只存在少量磁力線,沿電*連線磁感應強度平均增加約12% ,沿管道內壁磁感應強度平均增加約20 % o
增益標定值如表2所示,傳感器增益由78. 99增加到89. 00,提高了12.7 %。
3. 3線圈寬度
線圈寬度決定著磁場沿軸向分布范圍,線圈越寬,磁場分布越寬;線圈越窄,磁場分布越窄。標準線圈參數(shù)如表3所示。
線圈寬度與傳感器增益關系圖如圖3所示。對于6英寸傳感器,當線圈寬度為標準值3. 32英寸時,傳感器增益為82. 62;當線圈寬度下降至2. 49英寸(標準值的0.75倍)時,傳感器增益下降至70.94;當線圈寬度下降至1.66英寸(標準值的0. 5倍)時,傳感器增益下降至55. 62;當線圈寬度下降至0. 83英寸(標準值的0. 25倍)時,傳感器增益下降至37. 48??梢钥闯?,傳感器增益與線圈寬度成正比。
4傳感器長度
理論上,在線圈參數(shù)不變的前提下,傳感器長度越長,有效磁場越大;但加長傳感器長度會增加成本。為了既有效利用線圈產(chǎn)生的磁場,又要使傳感器較短、設計較為經(jīng)濟,需為傳感器選擇合適的長度8。
采用一臺日徑為6英寸、標準線圈的傳感器,改變傳感器長度,依次進行試驗室標定試驗。傳感器長度與增益的關系圖如圖4所示。當傳感器長度為9. 1英寸時,其增益為61. 03;但當其長度繼續(xù)增加時,增益變化較小;當其長度6. 1英寸減小到0時,增益從59. 33開始下降。也就是說,當傳感器長度為6. 1-9. 1英寸時,既有效利用了線圈產(chǎn)生的磁場,又可使傳感器長度較短。
需要注意的是,同樣一組線圈安裝在不同日徑的管道上,由于兩個線圈之間的距離不同,其磁場分布大日徑要比小日徑窄9。如果采用正常的傳感器設計,不可能實現(xiàn)傳感器長度小于線圈寬度,所以本文采用塑料管道作為主管道、金屬薄管從兩頭內插人的設計進行試驗io。
5結束語
通過以上分析、仿真和試驗室標定,證明了傳感器靈敏度跟線圈匝數(shù)和線圈寬度成正比導磁材料硅鋼片能有效增強磁感應強度;對于6英寸傳感器,采用標準線圈,其寬度為4.76英寸,當傳感器長度為6.1一9.1英寸時,增益較大,此時既有效利用了線圈產(chǎn)生的磁場,又實現(xiàn)了經(jīng)濟設計的目標。在給定傳感器日徑和線圈驅動電流的情況下,本文研究為傳感器靈敏度設計提供參考。